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IN~SPECTED

AbsteW>The shuffle-exchange graph is one of the best structures known for
- parallel computation. Among other things, a shuffle-exchange computer can be used

to compute discrete Fourier transforms, multiply matrices, evaluate polynomials,
perform permutations and sort lists. The algorithms needed for these operations are
extremely simple and many require no more than logarithmic time and constant
space per processor. In this paper, we analyze the algebraic structure of the shuffle-
exchange graph in order to find area-efficient embeddings of the graph in a two-
dimensional grid. The results are applicable to the design of Very Large Scale
Integration (VLSI) circuit layouts for a shuffle-exchange computer. ----

Key words: area-efficient chip layouts, complex plane diagram, graph embedding,
U necklace, shuffle-exchange graph, Thompson grid model, Very Large Scale

Integration (VLSI)
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1. Introduction

The shuffle-exchange graph has long been recognized as one of the best

structures known for parallel computation. Among its many applications, a shuffle-
exchange computer can be used to compute discrete Fourier transforms, mUltiply
matrices, evaluate polynomials, perform permutations and sort lists [S71, P80, S80].

The algorithms needed for these operations are extremely simple and many require
* no more than logarithmic time and constant space per processor.

Recent developments in Very Large Scale Integration (VLSI) circuit technology
have made it possible to fabricate large numbers of very simple processors on a

single chip. As most of the processors contained in a shuffle-exchange computer are
very simple, the shuffle-exchange graph serves as an excellent basis upon which to

design and build chip-sized microcomputers. One of the main difficulties with such
an architecture, however, is the problem of routing the wires which link the
processors together in a shuffle-exchange network. Current fabrication technology
limits the designer to two or three layers of insulated wiring on a chip and demands

that he make the chip as small in area as possible.

Abstracted, the designer's problem becomes the mathematical question of how to
embed the shuffle-exchange graph in the smallest possible two-dimensional grid.
"Thompson was the first to formalize the question mathematically. In his thesis
[F80], he showed that any layout (i.e., embedding in a two-dimensional grid) of the

N-node shuffle-exchange graph requires at least U(N 2/log 2N) area. In addition, he

described a layout requiring only O(N 2/log112N) area. Shortly thereafter, Hoey and
Leiserson [HL80] described an embedding for the shuffle-exchange graph in the

complex plane (which we refer to as the complex plane diagram) and showed how
the diagram could be used to find an O(N 2/logN)-area layout for the N-node

shuffle-exchange graph.

In this paper, we investigate the algebraic properties of the complex plane
diagram in order to find several O(N2/log?/2N)-area layouts for the N-node shuffle-
exchange graph. In addition to being asymptotically superior to previously
discovered layouts, the layouts described in this paper are also superior for small
values of N. In fact, one of these layouts serves as the basis for the more recent
work of Leighton and Miller who have described optimal layouts for small shuffle-

exchange graphs in [LM8I].



Subsequent to the completion of the research presented in this paper, we learned
that Rodeh and Steinberg independently discovered an O(N/1og312N)-area layout

for the N-node shuffle-exchange graph. Their work is also based on the complex

plane diagram and appears in [SR81]. Even more recently, Kleitman, Leighton,

Lepley and Miller [KLLM81] have discovered an entirely new method for laying out

shuffle-exchange graphs which can be used to find asyrnptotically optimal
O(N2/Iog2N)-area layouts. Although their layouts are not entirely practical, they are

the only layouts known to achieve Thompson's lower bound asymptotically.

The remainder of the paper is divided into six sections. In section 2, we define

the shuffle-exchange graph and the grid model of a chip. We also describe

Thompson's O(N2/og 1/ 2IV)-area layout for the N-node shuffle-exchange graph. In

section 3, we define the complex plane diagram for the shuffle-exchange graph and

mention several of its properties. In section 4, we describe several layouts for the

* shuffle-exchange graph which are based on the complex plane diagram. These

include a straightforward O(N2/IogN)-area layout and several new O(N2/Iog12N)-

area layouts. Section 5 contains some remarks and open questions, and sections 6
and 7 contain the acknowledgements and references.

2. Preliminaries

2a) The shuffle-exchange graph

The shuffle-exchange graph comes in various sizes. In particular, there is an
N-node shuffle-exchange graph for every N which is a power of two. Each node of

-4 the (N= 2k)-node shuffle-exchange graph is associated with a unique k-bit binary

string ak-' a0 . Two nodes wand w' are linked via a shuffle edge if w' is a left

or right cyclic shift of w (i.e., if w = ak-. .a0  and w' = ak-.2 .aoak- or
w'= ao... ak.al , respectively). Two nodes w and w' are linked via an

exchange edge if w and w' differ only in the last bit (i.e., if w = ak-• ... a0 and
w'= ak.... all or vice-versa). As an example, we have drawn the 8-node !

shuffle-exchange graph in Figure 1. Note that the shuffle edges are drawn with

solid lines while the exchange edges are drawn with dashed lines. We shall follow

this convention throughout the paper.
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100 101

000 001 110 i1

010 011

Figure 1: The $-node shuffle- exchange graph.

By replacing the nodes and edges of the shuffle-exchange graph by processors
and wires (respectively), the shuffle-exchange graph can be transformed into a very
powerful parallel computer (which we call the shuffle-exchange computer). The
computational power of the shuffle-exchange computer is partly derived from the
fact that every pair of nodes in an N-node shuffle-exchange graph is linked by a
path containing at most 21ogN edges and thus the communication time between
any pair of processors is short.

More importantly, however, the shuffle-exchange computer is capable of
performing a perfect shuffle on a set of data in a single parallel operation. For
example, consider a deck of 8 cards distributed among the 8 processors of the 8-
node shuffle-exchange graph so that processor 000 initially has card 0, processor
001 initially has card 1, processor 010 initially has card 2, and so forth. Next,
consider a (parallel) operation of the shuffle-exchange computer in which each

4I processor a2ajao sends its card across a shuffle edge to the neighboring processor
ajaoa2 . It is easily verified that, after completion of the operation, processor 000
contains card 0 (thc, top card in the shuffled deck), processor 001 contains card 4
(the second card in the shuffled deck), and so forth.

The power of card shuffling and its mathematical abstractions is well known to
magicians and mathematicians [DGK811 as well as to computer scientists 1S71,
S80]. For a good survey of the computational power of the shuffle-exchange
graph, we recommend Schwartz' paper on ultracomptters [S80]. In addition,
Stone's paper [S71] contains a nice description of some important parallel
algorithms based on the shuffle-exchange graph.

* 3



2b) The grid model

Among the many mathematical models that have been proposed for VLSI
computation, the most widely accepted is due to Thompson and is known as the
Thompson grid model [T79, T80]. The grid model of a VLSI chip is quite simple.
The chip is presumed to consist of a grid of vertical and horizontal tracks which
are spaced apart by unit intervals. Processors are viewed as points and are located
only at the intersection of grid tracks. Wires are routed through the tracks in order
to connect pairs of processors. Although a wire in a horizontal track is allowed to
cross a wire in a vertical track (without making an electrical connection), pairs of
wires are not allowed to overlap for any distance or to overlap at corners (i.e., in
they cannot overlap in the same track). Further, wires are not allowed to overlap
processors to which they are not linked. (The routing of wires in this fashion is
also known as layer per direction routing and Manhattan routing.)

As an example, we have included a grid layout for the 8-node shuffle-exchange
graph in Figure 2. As before, the shuffle edges are drawn with solid lines while the
exchange edges are drawn with dashed lines. Notice that we have omitted the self-
loops in Figure 2 since they are electrically redundant. In general, the processors
need not all be placed on a single horizontal line (as they are in this example).

- I -

I-- - - -

000 001 100 010 O11 101 110 111

Figure 2: A grid model layout of the 8-node shuffle-exchange graph.

Practical considerations dictate that the area of a VLSI layout be as small as
possible. The area of a layout in the grid model is defined to be the product of the

number of horizontal tracks and the number of vertical tracks which contain a
processor or wire segment of the layout. For example, the layout in Figure 2 has

area 48. As can be easily 'observed, this is far from optimal.

4



2c) Thompson's layout

Given any k-bit string w, define the size of w to be the number of f-bits it
contains. For example, the size of /0110 is 3. Thompson's idea was to lay out the
N=2k nodes of the shuffle-exchange graph on a straight line in order of
nondecreasing size. It is easily seen that shuffle edges link nodes which have the ..
same size and that exchange edges link nodes which have sizes differing by one.

Thus the edges of such a layout are relatively short. In fact, nodes connected by
shuffle edges can be placed in a group, so that only 2 horizontal tracks are used for
all the shuffle connections. The remaining horizontal tracks arc occupied by
exchange edges.

The exchange edges are inserted from left to right so that each exchange edge
occupies two vertical tracks and a portion of the lowest horizontal track which is

empty at the time of its insertion. (For example, Figure 2 displays a layout for the

8-node shuffle-exchange designed in this way.) This well-known strategy for
inserting exchange edges guarantees that the number of horizontal tracks used will

be minimal, and equal to the maximum number of edges which must (at some
fixed point) overlap one another. Since exchange edges link nodes which differ in
size by one, it is easily seen that the maximum overlap is at most O( max B)0Of S4k

where B. is the number of nodes of size s.

It is easy to show that Bs = C(k,s) for each s, where

C(k,s) = k!/[s!(k-s)!.

.? is the well-known function for binomial coefficients. It is also well-known that
C(k,s) achieves its maximum value at s=k/2 for any k. Using standard asymptotic

* analysis, it is easily shown that C((k,k/2) - (21r)I/ 2(2k/k 1/ 2) for large k. (For a

good review of such techniques, see Bender and Orszag's book [B078].) Thus
" Thompson's layout requires only O(N/1og112N) horizontal tracks. Since only 1 or

2 vertical tracks are needed to embed the vertical portions of the edges incident to
any given node, we can conclude that Thompson's layout has area O(N 2/1ogt/2N).

3. The Complex Plane Diagram

*I In [HL80], Hoey and Leiserson observed that there is a very natural embedding

of the shuffle-exchange graph in the complex plane. In what follows, we describe

6 5



this embedding (which we call the complex pla.e diagram) and point out some of
its more important properties.

3a) Definition

Let Sk = e2 i/k denote the kih primitive root of unity. Given any k-bit binary
string w = ak. .. ao , let *w) be the map which sends w to the point

p(w)= ak. 18k k1 + ... + aj8 k + ao

in the complex plane. As each node of the (N= 2k)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the
shuffle-exchange graph in the complex plane. For example, we have done this for
the 32-node shuffle-exchange graph (whence k=5) in Figure 3. For simplicity,
each node is labeled with its value instead of its 5-bit binary string. (By the value
of a node, we mean the numerical value of the associated k-bit binary string.)

+271

_I +9I
+~1 . P-

-2 - 0 + \ +2

~~Figure 3: The complex plane diagrm for te 32-node Pshuffle-exchange gra ph. ( Taken from [H L801.)

26
28 2"1
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3b) Properties

Examination of Figure 3 indicates that the complex plane diagram has some
very interesting properties. First, it is apparent that the shuffle edges occur in
cycles (which we call necklaces) which are symmetrically placed about the origin.
This phenomenon is easily explained by the following identity:

Sk1ak-1"'ao) = ak.1kk + ak_
2 Ekk... + ak 2 + aoak

- ak. 28kk-1 + .. + ao k + ak+ 1

= p(ak_2... aoak.J).

Thus traversal of a shuffle edge corresponds to a 2r/k rotation in the complex
plane.

Except for degenerate cases, the preceding identity also indicates that each
necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces
are called full necklaces. 1)egeneraie necklaces contain fewer than k nodes and,
because they must have some symmetry, are mapped entirely to the origin of the
complex plane diagram. For example, (000001 and {0101, 10101 are degenerate
necklaces while both 1101, 0//, 1101 and {11100, //001, 10011, 00111, 0111O} are

full. As we note in the following proposition, the number of degenerate necklaces
is quite small compared to the number of full necklaces.

Proposition 1: There are O(N 1 2)  degenerate necklaces and N/logN -

O(N'1 2/logN) full necklaces in he N-node shuffle-exchange graph.

Proof- A node v is in a degenerate necklace if its binary representation has a
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a
string of bits must consist of a block of k/p bits which is repeated p times where p
is some prime divisor of k. As there are 2k/11 binary strings of length k/p. this

means that the number of nodes in degenerate necklaces is at most

S ~Y 2klP < O(N'l 2 ).

The remaining N - O(N' / 2) nodes are in full necklaces. As each full necklace
contains logN nodes, there are N/logN - O(N1 2/logN) full necklaces 03

It will often be convenient to refer to a necklace by one of its nodes. In

* 7



particular, we will use the notation <v;O to indicate the necklace generated by w.
This is simply the collection of cyclic shifts of w. For example, the necklace
generated by 101 is <101> = {101, 011, 1101

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as a horizontal line
segment of unit length. This phenomenon is explained by the identity

p(ak.... a1O) + I = ak.8kkl +... + a/ k + I

=p(ak-...,all).

In sonic cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called levels. For example, there are 9 levels in the
diagram of the 32-node shuffle-exchange graph shown in Figure 3. We will use
the properties of levels to find O(N2/log 31 2N)-area layouts for the N-node shuffle-
exchange graph.

4. Layouts Based on the Complex Plane Diagram

In this section, we present several layouts of the shuffle-exchange graph which
are based on the complex plane diagram. We commence with a straightforward
O(N 2/logN)-area layout of the N-node shuffle-exchange graph. This layout has
been discovered by many researchers (including Hoey and Leiserson). Later, we
show how the layout can be modified so as to require only O(N2/1og312N) area.

4a) A straightforward O(N 2/IogN).area layout

In what follows, we describe a straightforward layout of the shuffle-exchange
graph which requires only O(N2/logN) area. The layout is formed from a grid of
levels and necklaces which we refer to as the level-necklace grid. Each row of the
grid corresponds to a level of the complex plane diagram. The columns of the grid
are divided into consecutive column pairs, each pair corresponding to a necklace.
The leftmost column of each column pair corresponds to that part of the necklace
which is contained in the left half of the complex plane. Similarly, the rightmost
column of each pair corresponds to the pait of the necklace contained in the right
half of the complex plane.

8



The rows of the level-necklace grid must have the same top-to-bottom order as

do the corresponding levels in the complex plane diagram. The columns, however,
may be arranged arbitrarily (provided that columns corresponding to the same
necklace are adjacent in the grid).

Each node of the shuffle-exchange graph is placed at the intersection of the row

and column of the grid which correspond to the level and part of the necklace (left

half or right hall) to which it belongs in the complex plane diagram. For example,

we have done this for a random ordering of the necklaces of the 32-node shuffle-

exchange graph in Figure 4. (Notice that we have used just one column each for

the degenerate necklaces <0> and <31> since they each contain just one node. In

general two columns will be required for necklaces which are mapped to the origin

of the complex plane diagram, but the nodes of each such necklace should still be

lumped togther at a single point of the level-necklace grid.)
4

necklaces

<3> <7> <lL> <IP <5> <02 <15> <31>

1 6 t 7

23 14 2 15
3 22 4 5 23
4 - - -0

111 10
levels 5 1 '1 1 1803031

6 1 20
6 8 9 27

8 17 28 -16 29
9

24 25

Figure 4: A level-necklace grid for Mhe 32-node shuffle-exchange graph.

a

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to

* produce a layout for the graph. The main step is to partition the exchange edges in

* each row of the grid into nonoverlapping subsets. Each subset can then be

Q assigned to a horizontal track of the layout. Except fbr the row corresponding to

the real line in the complex plane diagram, the assignment of subsets to horizontal

* 9



tracks within a row is arbitrary. (The assignment of horizontal tracks containing
nodes on the real line must preserve die cyclic orientation of the nodes which are

in necklaces that are mapped to the origin.)

Once this is done, the exchange edges can be inserted in the horizontal tracks

and the shuffle edges can be inserted in the vertical tracks. (To be precise, some of
the shuffle edges also occupy part of a horizontal track at the top or bottom of the
layout.) By Proposition 1, the number of vertical tracks occupied by the necklaces
is at most 2N/IlogN + O(NI/). Since there are precisely N/2 exchange edges, at
most N/2 + 2 horizontal tracks are contained in the layout. Thus the total area
of the layout of the N-node shuflTe-exchange graph is at most N 2/logN+ O(N 3'2).

As an example, we have displayed in Figure 5 a layout of the 32-node shuffle-
exchange graph produced from the level-necklace grid in Figure 4.

necklaces

< 3> <7> <11> <1 ;' <5> <0><15> <31>

1 6 7

3 2

4 5

4 10

levels 17 13 1 '0 36 31

19 18

6 1 .20

8 9 9

!9

17 16
2 [2 5

Figure 5: Layot of ihe 32-node s/wfe-x/zne rp

produced from the level-necklace grid shown in Figure 4.
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4b) Al improved O(N 2/log3 '2N)-area layout

It is possible to improve the layout described in section 4a by reducing the
number of horizontal tracks needed to embed the exchange edges. This can be
done by reordering the necklaces from left to right so as to increase the average
number of exchange edges which can be inserted on each horizontal track. For

example, the ordering of the necklaces shown in Figure 6 results in far fewer
horizontal tracks being used than did the ordering of necklaces shown in Figure 5.

necklaces

<0> <1> <3> <5> <7> <11> <15x31>

1 6...........,

2 4t-- -43 5- . . . 5

3 -1.. . . . ." 3

levels 5 12 123

- -19 36 -- '*31
6 2-0----------------

7 26 27
8 IC --1 7 VT - .. "29

9 " L 25

Figure 6: An improved layout for the 32-node shuffle-exchange graph.

Although we do not know how to best order the necklaces in general, we have
found several orderings which yield O(N2/iog3/ 2N)-area layouts for the N-node
shuffle-exchange graph. For instance, we will show in what follows that such a
layout can be constructed by arranging the necklaces from left to right in order of J
nondecreasing size. (The size of a necklace is simply defined to be the size of any

* of its nodes.) As an example, the layout displayed in Figure 6 is of this form.

(This observation has also been made by Steinberg and Rodeh in [SR8I].)

In order to bound the number of horizontal tracks needed to insert the exchange

*11-



edges, we will show that the maximum overlap of exchange edges on each level is
at most the number of nodes of size h = t(k-I)/2J on that level. Since the
maximum overlap of exchange edges on each level is an upper bound on the
number of horizontal tracks needed to insert the exchange edges on that level, we
can thus conclude that the total number of horizontal tracks needed to insert all of
the exchange edges is at most

Bh <_ Bwo2 = (217r) 11 2NIog112N + O(N/log3" 2N).

Thus the resulting layout will have area at most

2(2/w)l/2N2/log12N + O(N 2/Iogj"2N).

Although it is clear that the maximum total overlap (over all levels) of exchange

edges is at most Bgk2, this is not sufficient to prove the result since any layout
must also preserve the top-to-bottom partial order induced by the necklace
strutcturc on the exchange edges. It is only within individual levels that the top-to-
bottom ordering of exchange edges is arbitrary. (As we noted earlier, some minor
precautions are necessary for the level corresponding to the real line.) It is not
immediately clear, however, why the maximum overlap on each level is at most the
number of nodes of size h<k/2 on that level. in what follows, we establish this
result by breaking up each level into sublevels (for which the analysis is easier) and
showing that the maximum overlap on each sublevel is at most the number of
nodes of size h on that sublevel: The analysis requires somne additional notation.

Consider a node of the form ak.... .a1O for which either ak.i=O or ai=0 or
both for each i<k. We will refer to such a node as basis node A node
bk-1... b0  is said to be generated by the basis node ak-1... a if

1) bk-i=ak.i and bi=a i whenever ak..,.ai for 1 < i< k-1, and

2) bk.i=bi whenever ak.i=ai=O for I < i < k-i.

For example, 10000 generates 10001. 11100 and 11101 but not !li!1.

It is not difficult to show that if u generates v, then both u and v are on the same
level of the complex plane diagram. For example, let u = ak.... ao  and

v = bk-.... bo and observe that

p(v) - p(u) = (bk.l - ak..,) 8kk- + . .. + (b, - a,) Sk + (bO - aO)

= Ck.18k + + Cl8 k + CO

12



where ck.i= c i for each i, / < i < k-1. Since 8kk'i is the complex conjugate of
Sk' for I < i < k-I , we can conclude that p(v) - p~u) is a real number and thus
that u and v are in the same level of the complex plane diagram.

It is also easy to show that each node of the shuffle-exchange graph is generated
by a unique basis node. In particular, the node which generates bk... bo can
be found by

1) setting b0 =0 and (if k is even) setting bkl2=O, and

2) setting bi=bk.i=O for each i such that (originally) bi=bkki=l.

Since exchange edges link nodes which have the same basis node, we can
conclude from the preceding arguments that it is possible to partition each level of
the complex plane diagram into sublevels so that the nodes in each sublevel are
precisely the nodes generated by some basis node. We will now show that the
maximum overlap on each sublevel is at most the number of nodes of size h on
that sublevel.

Since the necklaces have been arranged from left to right in order of
nondecreasing size, the overlap of exchange edges between two nodes of size s in
any sublevel is at most 0( max Bs') where Bs ' is the number of nodes in that
sublevel with size s. In the following proposition, we compute Bs ' and show that
its maximum fbr any sublevel.occurs at s=h.

Proposition 2: Each basis node of size r generates Bs ' nodes of size s, where

1) Bs ' = C(h-0r,) for s=r+2i and i<h-r, and

2) B' =C(h-r, ) for s=r+2i+l and i<h-r

when k is odd, and

1) Bs ' = C(h- r+ i, 1) for s= r+ 2i and i:5 h- r+ 1, and

2) Bs ' = 2C(h-r, 1) for s=r+2i+l and i< h-r

when k is even.

Proof- When k is odd, there are precisely h - r pairs aj = ak.j = 0 in a basis
node of size r. In order to generate a string of size s= r+ 2i when k is odd, we
must set bo=0 and set iof the h-r pairs so that bj =bkj =1. There are C(h - r, 1)
such strings. To generate a string of size s= r+ 2 + when k is odd, we must set
bo= I and choose i of the h-r pairs so that b. =bk =. As before, there are
G(h - r, 1) Such strings.
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When k is even, there is also the degenerate pair ak12 -0. To generate a string
of size s= r+ 2i when k is even, we must choose i of the h - r+ / pairs so that b.
= bk.j = I (this count includes the "pair" bo = bk 2 = 1). There are C(h - r+ 1, 1)
such strings. To generate a string of size s= r+ 2i+ 1 when k is even, we must set

either b,=l and bk,,2 =0 or bo=0 and bkw2 = /, and choose i of the hr pairs so
that b bk.J =I (j k/2). There are 2C(h - r, 1) such strings [

Given Proposition 2, it is easily checked that the maximum value of Bs ' for any

sublevel (independent of the value of r) occurs when s=h. Thus the sum (over all
sublevels) of the maximum overlap at each sublevel is at most the number of nodes
of size h = L(k-J)/J in the 'entire graph. This is at most C(k, k/2)

(2/wr)I/ 2(2k/k/ 2). Thus the total area of the layout is no more than

2(2fr) 1 / 2N2/log3 2N + O(N 2/logj' 2N),

as claimed.

4c) Additional O(N 2/log312N)-area layouts

By varying the order of the necklaces in the level-necklace grid, it is possible to
produce a variety of layouts for the shuffle-exchange graph which require at most

O(N2/log / 2N) area. The complex plane diagram itself suggests one such ordering.
For example, consider an arrangement of the necklaces from left to right in order
of nondecreasing radius. (The radius of a necklace is defined to be the distance of
its nodes from the origin in the complex plane diagram.) Such a layout

corresponds to a folding of the complex plane diagram along its imaginary axis
followed by a straightening of the necklaces. In what follows, we will show that,
like a layout by necklace size, a layout by necklace radius has area O(N 2/1og3 /2f.

Because the layout by radius is so closely related to the complex plane diagram,

our analysis will center on the complex plane diagram, itself. As before, we will
partition the levels into sublevels and find an upper bound on the maximum
overlap of exchange edges on each sublevel separately. The number of horizontal
tracks needed to insert the exchange edges will then be at most the sum of these
upper bounds. We will show that this sum is at most O(N/Ilog1 2N).

Notice that the maximum overlap of exchange edges on a sublevel of the level-

necklace grid is at most twice the maximum overlap on that sublevel in the

complex plane diagram. (The factor of two is introduced by the "folding" of the
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diagram along its imaginary axis. Although straightening the necklaces might

affect the maximum iotal overlap of exchange edges, it does not affect the overlap

within a sublevel.)

Within a sublevel, an exchange edge can be identified by the real part of its

midpoint. For example, the real part of the midpoint of exchange edge
(bk.I...blO. bk. I ... bl l) is

bk. i cos[27r(k-1)/k] + ... + bI cos[2wi/k] + 1/2.

If a is a basis clement of a sublevel, then a generates the other nodes in that

sublevel by substitution of the appropriate pairs of ones. For instance, we may set

bi=bk.i=l, if ai=ak.i=O. Let
Ta <j{lyh aj=ak.-j=O}

denote those indices I <i <h where a pair of 1-bits may be substituted for a pair

of 0-bits. (As before, h = Lk - 1)12 but for convenience, we shall henceforth
assume that k is odd.) Notice that if b is generated by a, then the real part of the

midpoint of the exchange edge incident to b is

22bicos(2vf,'k) + ,cos(2Qi/k) + 1/2

We now introduce a random variable Za, which has as its image, all of the real
parts of the midpoints of edges in the sublevel generated by a. Since bi=bki can

be either 0 or I when i E Ta, let Bi be a random variable representing this choice.
In particular,

Bi =0 with probability 1/2, and

Bi =1 with probability 1/2.

* Then

Za 2 cos (2w ilk) Bi + .cos (2' i/k) + 1/2

= 2 cos (21tilk) (Bi-1/2).

Since the exchange edges have unit length in the complex plane diagram, two

edges overlap if and only if their midpoints are within unit distance of each other.

"lras the number of edges which overlap at position x on the sublevel generated

by a node a is given by the formula

15



]
2 Tal Prob[x- 1/2 < Za < x+ / 21 j

where Iral denotes the cardinality of Ta. (We caution the reader that the notation

IxI is also used to denote the absolute value of x.)

Although the distribution function of Za is difficult to analyze directly, it does

behave like a normal distribution. This is because Za is the sum of independent
random variables which have mean 0 and variance a,2 = cos-(21ri/k). The Berry-

Esseen Theorem states precisely how far Za can vary from a normal distribution.

(For a proof of this theorem see [F711.)

Berry-Esseen Theorem: Let X1 , X2 ,..., Xm  be independent random
variables such that E(Xi) = 0, E(Xi2) = a 2, and E(I X3I) = pi for 1:i< m.
Set s2 = o12 +a,n and r = PI+. + pin. In addition, let F denote

the cumulative distribution function of the sum (XI +. • + Xn)/s. Then for all x,

II(x)- (x)l _< 6rls3

where 4) is the standard normal cumulative distribution function 03

In the case of a sublevel generated by a node a, we have

Xi = 2 cos(2v i/k) (Bi-1/2) for iC Ta,

ie 7T&
sa2 = cos2 (21r i/k) and

jT
ra  Icos3 (2wr ik)I.

Applying the Berry-Esseen Theorem, we can thus conclude that

Prob[x-1/2<Zax+ 1/2] = Prob[(x-1/2)/sa<_Za/sa<_(x+l/2)/sa]

< 4[(x+1/2)/sa] - 4O[(x-1/2)/sal + 12ra/sa3

Because the standard normal density function is symmetric and unimodal, we can
conclude that the maximum of Prob [ x - 1/2 < Za < x+ 1/2 ] occurs at x = 0

and is at most O(1lsa + ra/Sa3).

In the following proposition, we fine, bounds for the values of ra and sa.

16I
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Proposition 3: For any basis node a

ra = Icos? (2v ilk) < ITal and
i 1E &

Sa 2 = Y cos 2 (21r ilk) > 1(ITak2).

Proof- The bound on ra is easy to compute since Icos3(2wi/k)I < 1. The
calculation of sa is a bit more tedious. In order to obtain a lower bound,

, cos2(2iri/k) must be made as small as possible. The smallest values occur when
7T,, contains indices i which are as close to (k-1)/4 as possible. In this case, we can
approximate cos2(2w i/k) with the value c(rl2 - 27ri/k)2 , for some constant c.
Direct computation reveals that the sum of these squares is at least 9Z(17,1 3 /k2) ]

Since ITal < k for all a, we can conclude from the preceding that the maximum
overlap of exchange edges on a sublevel generated by a is at most

0 (21T1 k / ITa 7"2).

Noting that there are precisely C(h,j) 2h-j sublevels generated by a node for
which ITal = j and summing, we can conclude that the total number of horizontal
tracks needed to insert all of the exchange edges is at most

Z C(h,J 2h-j 0(2i k3 /1)
h '

= [ k32h 1 C(h,j)/ j) 1.

It is not difficult to check that the dominant terms in the preceding sum occur -1
when j = i/2 ± 0(h/21ogh). In this region, j = O(k) and thus the sum is
bounded above by

h
0 [2h k-/2  C(h,j)J = 0(2kI/k/ )

= O(N/og 112N),

' thus completing the proof that a layout by necklace radius takes at most
O(N2/log3/ 2N) area.
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5. Remarks

It is worth remarking that the O(N2/log3/ 2N)-area layouts for the shuffle-

exchange graph described in section 4 actually require 12(N 2/Iog/ 2N) area and
thus our analysis of these layouts cannot be improved by more than a constant
factor. in each case, the lower bound on area can be derived from the fact that the
maximum total overlap of exchange edges in the layouts is at least £(N/logt/2N).
(Remember that although the maximum total overlap of exchange edges is not an
upper bound on the number of horizontal tracks needed to insert the exchange
edges, it is a lower bound.)

The fQ(N/log112N) lower bound on maximum overlap is easily es'ablished for
the layout according to necklace size since Q(N/Iogt/ 2N) exchange edges link
nodes of size k/2 to nodes of size k/2+1. The lower bound on maximum overlap

-4 is somewhat more difficult to prove for the layout according to necklace radius.
The first step in the proof is to show that at least N/2 exchange edges are
contained within a square of side length ck1t 2 centered at the origin of the
complex plane diagram (where c is a constant). (This can be done by using the
techniques developed in section 4c.) Next consider the sum (over t) of the total
overlaps at points corresponding to radii of /2 for I<i<ck12. Because the
complex plane diagram is radially symmetric, it is possible to show that at least
U(N) exchange edges are counted. in this sum. Thus the overlap at one of these
points must be at least U(N/k" 2V).

Since Thompson [IT80] has shown that any layout for the N-node shuffle-
exchange graph must have area at least R(N 2/log2A9, we know that at least
SZ(N/IogN) horizontal tracks are needed to insert the exchange edges for any
ordering of necklaces in the level-necklace grid. However, there is no ordering of
the necklaces known for which the exchange edges can be inserted using less than
o(N/Iog1/ 2N) horizontal tracks. This suggests an interesting open question since it
would be nice to find an O(N 2/Iog2N)-area layout based on the complex plane

diagram. (Although an asymptotically optimal O(N2/log2N)-area layout for the p

shuffle-exchange graph has recently been found by Kleitman, Leighton, Lepley
and Miller [KLLM81], it is rather complicated and of limited practical use.)

Although we do not know of necklace orderings for which the exchange edges
can be inserted using less than o(N/ogt/2N) horizontal tracks, we do know of
orderings for which the maximum total oi'erlap of exchange edges is at most
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O(NloglogN/logN). For example, an ordering of the necklaces by minimum value

has a maximum total overlap of O(NloglogN/logN). (The minimum value of a
necklace is simply the minimum of' the values of the nodes contained in the
necklace.)

Interestingly, an analysis of the minimum (over all orderings) of the maximum

total overlap for small values of N indicates that there may always be an ordering
for which the maximum total overlap is at most O(N/logN), the least possible. In
fact, for 3 < N < 7, this minimum maximum overlap is precisely L.2k - 2)/kJ. A
summary of the minimum maximum overlap data for small values of N is included
in Table 1.

Table 1

Maximum Overlap of Best Known Orderings

maximum overlap of
k N best known ordering optimal?

3 8 2 yes

4 16 3 yes

5 32 6 yes

6 64 10 yes

7 128 18 yes

8 256 33 yes

9 512 62 ?

10 1024 115 ?

11 2048 214 ?

12 4096 388 ?

13 8192 754 ?

In addition to varying the order of the necklaces, improvements in the layout
may also be made by rearranging the level assignments of the exchange edges. For

example, the layout of the 32-node shtffle-exchange graph shown in Figure 7 was

constructed in this way. (The careful reader will notice that we have also
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manipulated the necklaces somewhat in order to produce this layout.) For a more

detailed discussion of the manner in which exchange edges can be reassigned, we
refer the reader to [LM81]. (Such layouts have also been used in conjunction with
the Blue Chip Project at Purdue 1$811.)

2 3 6 7 1'4 15

4 5 10 11 22 23

0 1 12 130331
II 19

20 2126 2

16 17 24 25 28 29

Figure 7: An improved layout for the 32-node shuffle-exchange graph.
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